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I. INTRODUCTION

We shall be interested in estimating states, X and b, for the

following (continuous- or discrete-time) system, which is assumed to be

the actual system or truth model: :
4 {3
0(5) = Ax +Bb + _;_ i x(0) (1) 1
B=0: bo=p (2a)
or ; ‘
4]  bkH) = bk =b (@b) M
and i
| (-1 = Hx+ cb+ 1 (3)

In these equations, we use operator O(x) to denote either 'i(t) or x(k+1),

and we do not show the explicit dependence of vector and/or matrix E

quantities on time. In this manner, we are able to present results for
continuous-time and discrete-time systems simultaneously. The
conditioning notation on the measurement is to remind us of the model
which is associated with the measurement; y(- I/O) will be referred to
as the actual measurement. Models other than </, will be introduced

below. In J,, xeR”, AeR" ", be R, BeR™ ', £eR", ye R,

He Rsxn’ Ce Rsx:-' and Me R®; and, §(-)and 1(-) are gaussian white

noise processes for which

E(g} =0 and E{1} =0 (4)
E{E®) 8'()} = Q&(t-1) or E{ §(k)E'()]} =Q L (5)
E{(Q®Q'(M} = R8(t-1) or E{Qk 1'(4)} = R &, (6)

-z‘




and

gL # (7)

Friedland (Ref. 1) describes a very interesting and practical
procedure for estimating the dynamical states, X, and the constant, but
unknown bias states, b, for system ‘/0' He shows that the optimum
estimate of x, g. and its associated error covariance matrix, Px, can

be expressed as

x = x + v !‘; (8)
- =3 x—
and
= -+ v v
Px sz x pb x (9

where ; is the bias-free estimate of x, computed as if no biases were
present, b is the optimum estimate of the bias, and V is a matrix which

blends the estimates x and b together to give x ,» the btas corrected

estimate of x. Matrices Pb and Px are defined in Section II.
2

In Friedland's derivation, he augments the bias states to the
dynamical states and shows that the resulting Riccati equation decomposes
so thal:g:: is computed via Eq. (8). This derivation is algebraic in nature,
and unfortunately, cannot be applied (or, extended) to more general
dynamical systems (i.e., systems where b is time varying). For this
reason we present an alternative approach to Friedland's derivation. We

assume, at the onset, the existence of the decompoattion for x in Eq. (8);

assume a specific structure for b require that X and b be unbiased
estimators of x and b, respectively; and minimize the trace of the
error covariance matrix of :_‘E_ and E_, with respect to a design matrix
which appears in our assumed estimator of b. We then demonstrate that

the resulting :x_ and b are indeed the minimum-variance estimators of x

> gl n == E|§ n'} = 0, always,
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and b; hence, our assumed decomposition ofé is a valid one.

Our derivation meth.od. which is patterned after the Athans and Tse
derivation of the Kalman filter (Ref. 13), is constructive in nature, which
is important because it affords us the possibility of extending Friedland's
results to more general classes of partitioned dynamical systems. Such
extensions, which are beyond the scope of the present paper, will be

described in a subsequent paper.

Some extensions of and work related to Friedland's decomposition
can be found in Refs. 2, 3, 5, 6, 7, 8, 9, and 19. Agee and Turner
(Ref. 5) augmented the bias states to the dynamical states and studied
conditions under which g can be decomposed as in Eq. (8). They showed
that there are three basic requirements for a genera'l linear filter to be
decomposed as in Eq. (8): (1) Vx must satisfy a specific equation;

(2) a gain condition of the form Ki = Kr; i Vxl% must exist (the gains in
this equation are related in an obvious wa.& to estimates i. Z. and _5_); and
(3) Eq. (8) must be true for all t (k) including t =0 (k = 0). Lin and Sage
(Ref. 2) formulate Friedland's problem in a different manner. In their
approach, the bias states are thought of as unknown constant mean values
of plant and measurement noise processes. The dynamical states are
estimated as usual, whereas the unknown means are estimated using the
maximum-likelihood formulation. Godbole (Ref. 3) has shown that Lin
and Sage's results are identical to Friedla.x'xd's. , Bierman (Ref. 19) has
obtained Friedland's decomposition using the square-root information
filter, and, has extended Friedland's results to smoothing. Additionally,
he gives matrix Vx the interesting and‘useful interpretation of a
sensitivity matrix; i.e., Vx - gz;ad x.

b

In some applications, the bias states are used to model constant
instrumentation error sources (Ref. 15), of which there can be a large
number (e.g., 50). It can happen that not all of the error sources are

significant, so that some of them should be deleted from the final filter;

wife
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or, that Qigniﬁcant error sources may have been initially neglected, and
should be included in the final filter. We are also interested in knowing
whether or not itwis possible to extend Friedland's decomposition t¢ the
situation where b is of variable dimension; but, in such a manner that all
preceding calculations associated with obtaining x(k) and X(k), for b of

dimension r,, do not have to be completely redone when b becomes of

1
dimension £ where rz > rl (the case T, < £ is similar, but is not
discussed in this paper). This extension is described in Section IV.
Bierman (Ref. 19) has obtained similar results, using a square-root

information filter approach.

Some important preliminary results are presented in Section II.
A parallel development of both the discrete- and continuous-time
decomposition, Eqs. (8) and (9), using our constructive approach, is given
in Section III. The extension of Friedland's decomposition to the situation
where b is ofi variable dimension is discussed in Section IV. Proofs for

all theorems are given in appendices.

IO. PRELIMINARY RESULTS

Recall thatgin Eq. (8) is the bias-free estimate of x, computed

as if no biases were present. It is obtained by suppressing the bias states,

b, in ‘/0 and applying the following Kalman filter to the resulting sys tem:"

OF) = (A-K HX+ K_y(-| (10)

~

For discrete-time systems, Kx = gx(k+ l)and H = H(k+ 1); matrix ﬁx

is the Kalman gain matrix for calculation of g

To facilitate our development of Eqs. (8) and (9), it is most

convenient to introduce the following artificial system, /z:

For discrete-time systems, change (A-iz‘H) in Eq. (10) to (A-RxHA).

B




rﬁﬁ ——

O(x ) = Ax. v & 3 - x.(0) (11)
% 27 2 =2
o % |
(- ly) = Hx, + 1 (12)

where x,¢ R™ and all other quantities are as defined for ‘{0' Only the

actual measurement, z_(- IJO) exists; artificial measurement y(- I./Z) is

non-existent, but, is useful for analysis purposes. Though we shall use

AR |/2) in our analyses, it will not appear in any of our final results.

Let éz denote the estimate of artificial state vector x5 using the

*
artificial measurement . ; lL.8.,
ificial 20 1y

O(x,) = (A-K H)x, + K_y(-|J,) (13)

Observe that the Kalman gain matrix for calculation ofé is exactly the
same as for the calculation of i‘:' since the well-known equations for the
Kalman gain matrix (and associated Riccati equations) do not depend on

the measurement process.

The following error processes and error covariance matrices will

be used during our developments:

x, = x-% (142)
Z2e E2° % s
By =uep (14¢)

' . 1)

Px be E[i‘-e f-e} E[E-eP-e'
= (15)

1 !
pl:ax Pl.'n E{Ee ie} E{ Eehe}

b For discrete-time systems, change (A-I~(xH) in Eq. (13) to (A-RXHA).

-6~




sz = E{ Eie £lI.’.e: ! ‘ (162)
and
Pbxz = E{ _l_)_e i'Ze ] (16b)

For discrete-time systems, all error covariances, as well as estimates
are for filtered quantities (i.e., £ = g(klk) and Px = Px(klk)), unless
otherwise noted.

The following theorems, which are proved in Appendix A, connect
the states x and X5 and estimators g and éz.

Theorem 1. If x(0) = Ez(o) and A is nxr, satisfying

O(A) = AA+B ; xMo) = 0 (17)
then

Theorem 2. Ifg(o) = gz(o) and A is nxr, satisfying (for

continuous-time systems)
F=@-K mi+ K Hr+C) (19a)
or (for discrete-time systems)

Ak+l) = [I - ExH]A k) + Ex [ HA (k+ 1) + C(k+ 1)] (19b)

where 7\'(0) = 0, then

+ KE’. (20)

I%
n
|%>

2

Matrices A and A are connected, as we show in:

eTe




Theorem 3. Let Vx 4 A - 1A Then Vx satisfies the following

equation (for continuous-time systems)

. = -~ = -~
V.= (@A-KHV +(B-KC) (21a)

or (for discrete-time systems)

Vx(kﬂ) = [I- K‘H][ A Vx(k) +B] - K C(k+ 1) (21b)

where V_(0) = 0.
x

Matrix Ver in Theorem 3, is, as we show below, precisely the

same matrix which appears in Eqs. (8) and (9).

OI. DERIVATION OF FRIEDLAND'S DECOMPOSITION

A. Introduction

In this section, we assume that x and b can be estimated from the

estimators

x =% +V b 22)
and :
Ob) = G; b+ G, y(-1dy)+ Gy x (23)

where g is the bias-free estimate of X, defined in Section II, and G., G

G3 (which are matrices of appropriate dimensions) and Vx are dete:-minzed
such that: (1) x and b are unbiased estimates of fand b, respectively,
and (2) the trace of the error covariance matrix forg_ and_ﬁ_ is minimized.
We then show that the resulting estimators are the optimal estimators of

x and P_

-8




B. Unbiasedness of the Estima.tors

The followmg two theorems demonstrate how Gl' G3 and V must

be chosen so that x and b given by Eqs. (22) and (23), resPecnvely, are
1
.unbiased estimators of xand b. Proofs of these theorems are given in

Appendix B.

Theorem 4. E is an unbiased estimator of _1_:_, iff

E(bO} = b (24)

and (for continuous-time systems)

G -G, HV_+ Q) (%)

1

G, = -G, H (26a)

or (for discrete-time systems)

Gl(k+1) =1- Gz(k+1) S(k+l) (25b)

G3(k+1) = -Gz(k-!-l)HA (26b)
where

S(k+l) = HAvx + HB + C(k+l) 27)

Theorem 5. If § is an unbiased estimator of _13 and Vx is as

given in Eq. (21), then é is an unbiased estimator of X.

Theorems 4 and 5 show that if Vx is computed in a specific

manner, and (for continuous~time systems)

5 = Glytldy) - MV _+C) 5 -HX ] (28a)

P




or (for discrete~time systems)

B(k+l) = [I-G,(t)Sk+)] bk)

+Gy(etl) [y(k| ) -HAX T , (28b)

then é and 1_‘;. are unbiased estimators of iand E_ in JO' Observe that Vx
(which, as we pointed out in Section I, is a sensitivity matrix) maintains
and G_, chosen as the

1 3
preceding functions of GZ' maintain the unbiasedness of the estimator E

the unbiasedness of the estimator x, whereas G

The only remaining matrix of design variables is GZ'

C. Optimal Gain Matrix, G

2
Matrix G2 is chosen such that the trace of the error covariance
matrix for the 2; and b estimators is minimized. That matrix, for / s

0
denoted P(-), has been defined in Eq. (15).

Theorem 6. If Pbx (0) =0, then

2
Pbx =0 ¥t or ¥k (29)
74
- + !
Px sz Vx Pb Vx (30)
*
and
be = Vx Pb y (31)
so that

*
Agee and Turner (Ref. 5) show that their gain condition holds if Eq. (31)

is satisfied. A gain condition, comparable to theirs, does not fall out of

our derivation.

{
i -10-
i




i i Al 0, SR IR o RS i Saidd - e

P 0 v . %
X x
Pl<) = + — ] P| — (32)
> I> b<1>

The proof of this thecrem, as well as the other theorems in this

*
paragraph, are given in Appendix C. Matrices Vx and Px are not
2
functions of Gz; hence, minimizing tr P( . ) with respect to Gzi_s

equivalent to minimizing tr ngblf,". and subsequently tr Pb with respect

to Gz._
Theorem 7. tr Pb is minimum with respect to G2 iff, (for
continuous-time systems)

* - 1 =1
GZ Pb ('HVx +C) R (33a)

or (for discrete-time systems)

G;(kﬂ) = PbS'(k+1)[S(k+1) P, S'(k+l) +H P (k+1|k)H'+R(1¢:+1)]"1 (33b)
b x2

where
P (ktl|k) = AP (k|k)A'+Q. (34)
*3 = -

Additionally, the optimal error covariance matrix for Pb can be computed

from (for continuous-time systems)

. 9 | p
. 1
Pb Pb(Hvx+ C)'R (HVx+ C)Pb (35a)

or (for discrete-time systems)

% -
Matrix Px , defined in Eq. (l16a), is associated with X, for ./2.
2

«lle-




4 ,
Pb(k+1) I ) 5 Gz(k+1) S(k+1)]Pb | (3 5b)

D. Summary

It is helpful, at this point, to summarize our results. We let

*
G2 = Kb' For continuous-time systems we have shown that

5 = -K, (Hvx+C)§+xb2(c|j°) 36) 1
- >
where _ I3
Tl = yelsy) -HE (37) |
K (5 = B (Hvx+c)'R'1 (38)
. x ' _1 ) 3
P,= -P,HV_+C)'R™ @V _+C)P, ; P (0) 39)

and Vx(t) is computed via Eq. (2la). For discrete-time systems we have i

shown that b

B(ktl) = [I- K, (k+1) S(k+1)]§(k) t K (k+1) y(k+l |./0) (40)

where

Y| L) = yktl]s) - HAX (41)

= 1 ] 1 '1
Kb(k+1) = PbS (k+1)[S(k+1)PbS (k+l1) +H Px (k+1|k) H'+ R (k+1)]

; (42)

P (k+1) = [I- K, (+1) S(k+1)] P (k) ; P, (0) (43)

w12+




and S(kt+l) is computed via Eq. (27), ‘which uses Vx(k) from Eq. (21b). In

both cases, é is computed via Eq. (22).

Observe that the bias-free estimator, z, couples into the calcula-
tion of_f_)_, through calculations of z(- I‘/(')) and Vx; but, E in no way

affects g.

E. Estimators é and b are the Minimum-Variance Estimators

Kalman (Refs. 10 and 11) has shown that a necessary and sufficient
condition for an estimator (E or é) to be the optimal (i.e., minimum-

variance) estimator is, that (for continuous-time systems)

n
o
o
A
_‘
A
r

) X -
E < ‘°> ye i) <ts< (442)
b
y -

or (for discrete-time systems)

Ze

E < >1’(il/o)
b
e

In Appendix D, we use these criteria to prove:

([}
o
-

[1]
o
—
n
.
P

(44Db)

Theorem 8. Our optimal linear estimators of :_2. and é. given by
Eqs. (22) and (for continuous-time systems) (36) - (39), or (for discrete-

time systems) (40) - (43), are the optimal estimators ofi and 2 in /0.

With this result we have completed our constructive derivation of

Friedland's decomposition.

«]l3-




IV. MULTISTAGE ESTIMATION OF BIASES

We now direct our attention at the problem of a.dciing (or deleting) H

bias states. We wish to do this in such a manner that previously computed i

quantities can be used to obtain the new estimates of xand b in /0' Let i
b =col (P-l’ BZ)' where 31 ¢ R 1 and bzc R 2. Suppose that, initially,
b=Db,; then /0 reduces to /1. where ;
1

(x,(ct1) = Ax (0 +B b, +§ ; x,0) (45) |

.,/i b, 0t) = b () = b, (46) }4
\yklll) =Hx (k)+C/ b +1 (47)

I

All quantities in /1 are analogous to those in JO' When we believe that ,
b=b,, then Z(kIJ]_) is the actual measurement. t

Let us assume tha.tg1 has been computed for ./1, as -

~ ~ “* %
%, A E kY B, (48) |

~ a X
where x 1 is the bias-free estimate of X and El and Vx are computed
4 |

from our results in Section III, with the appropriate substitutions, that
B = B1 and C =C.. Now, let us add additional bias states, b_, so that

1 =2
om:systernis‘s(,withb=col(b 'b,), B =(B,]B,), and C = (C,| C,).

- X
We wish to estunate b in ,4/ using the already computed bl , and, we

= |
wish to compute x by means of Eq. (22) using b b, and the already computed |

~

_1'

*x
This part of our paper, which deals with recursive bias estimation,

is presented only for discrete-time systems, since it seems to be most

practical for such systems.

! " ;




The key to solving this problem is to recognize that E, given by

Eqs. (40) - (43), can be associated with the following a.‘uxilia.ry parameter

estimation problem'(Ref. 16): Obtain minimum-variance estimates of the

constant parameter vector, E, from the (au'xiliary) measurement equation
T(k+l) = S(k+l) b + v (k+1) (49)
where z(kﬂ) is, by definition, a zero-mean white noise sequence, and

4

Ef v(k+1) v'(k+1)} = R(k+l) + H(k+l) P_ (k+1|k) H'(k+1) (50)

2

Actually, E(k+1) = z(k+1|¢/o). and, we see from Eq. (41) that z(kﬂ) can
be assembled from the actual measurement X(k+1 l/o) and the bias-free

~
estimate of x, x; i.e.,

Iletl) = y(ktl|o) - HAX (51)

Numerous authors (Refs. 4, 8, and 14, for example) have developed
algorithms for estimation of a constant parameter vector which are
recursive in the dimension of that vector, as well as sequential in time.

Mendel (Theorem 3, Ref. 4), for example, shows that

B (k1) = B “(k+1) - G(k+1) B ierl) (52a)
and .
[ ~ %
b, (k+1) = C(k+1)( u, (k+l) - Gi,(k+l) b, (k+1)] (52b)

*
where G(k+l), C(k+l), gz(kﬂ). and Glz(kﬂ) are computed from other

*
Our statement of Eqs. (52a) and (52b) retains Mendel's notation; matrix

C(k+l) in (52b) is not the same as our matrix C.

-15«




equations given by Mendel. These equations are not needed for our

purposes; hence, they are not given.

We conclude, therefore, that it is indeed possible to estimate b

o -
1"
a parameter estimation algorithm, which is recursive in the dimension of

in ,/0 using the already computed _ﬁ_ This is accomplished by applying
b and sequential in time, to estimation of b for the auxiliary measurement

T (k+1).

The following theorem demonstrates how to compute g(k) from
~ .* ~
previously computed il(k) and El(k), and, from p_z(k). These results are

similar to those in Bierman (Ref. 19).

~ A %k . -~
Theorem 9. Given il(k) and El(k), for Jl' State estimate i(k)'

for JO’ can be computed from:

~ ~ ~ -
x (k) = x(k) +Vx1(k) b,k) + [sz(k) = Vxl(k)G(k)] b, (k) (53)

where, fori =1,2,

vxi(k+1) = [fe Kx(k+l) H(k+1)][A v"i(k) + B.l]

- K_(k+1) C, (k1) ; in(O) =0, (54)

and, _G_Z(k) and G(k) are computed from an algorithm which is recursive
in the dimension ofhand is sequential in time, such as the one in Mendel

(Theorem 3, Ref. 4).

The proof of this theorem is given in Appendix E. It is important
to understand that g(k) = Zl(k); i.e., adding (or deleting) biases does not
affect the '"bias-free estimates.' We see, from Eq. (53), that x (k) does
not have to be completely recomputed when biases are added. In fact,

another way to write £q. (53) is, as

-16-
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2k) = £ (k) +( Voalel = ¥ (RG] b, (k) | (55)

which makes this even more evident.

V. CONCLUSIONS

We have rederived Friedland's decomposition, Eq. (8), by means
of a constructive approach, which lends itself to studying extensions of his
results to more complex systems, where biases are themselves modeled
as first-order Markov processes (Ref. 17, for example). These extensions
have been made and will be reported on in a future publication. Our
constructive approach gives some insight and physical meaning into
certain quantities, such as Vx’ which appeared in Friedland's solution.
The key to our constructive approach is the artificial system, ,jz:
through that system, we are able to make connections between x and x

for,

as well as E and gz. :
As a consequence of our approach, we showed that _b: can be given
the interpretation of a minimum-variance parameter estimator which is
associated with an auxiliary measurement. With this interpretation, we
can use well-known algorithms for estimating the bias which are recursive
in the dimension of the bias as well as sequential in time. E:Ience, we
have shown that it is possible to add (or delete) bias states in such a
manner that previously computed quantities can be used to obtain new

estimates of iand E

-17-
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APPENDIX A. PROOFS OF PRELIMINARY RESUL TS

The proofs presented in this and subsequent appendices are for
the continuous-time case. It is felt that these proofs give the essence of
the constructive method in a clearer fashion than those of the discrete-time

case. Many of the discrete-time proofs are inductive in nature.

l. Proof of Theorem 1

From Eqs. (11) and (17), it follows that

d g e : ’
G EatAb) =k tAb < A, AR +BRY £ (A-1)

but, _:52(0) +Ao0)b = J_‘_Z(O) =x(0); hence, £2+ Ab satisfies the same
differential equation (d.e.) as Xx. By uniqueness, therefore, x,+t AB = x,
which is Eq. (18).

2

2. Proof of Theorem 2

From Eqs. (13) and (19a), it follows that

]
1%

d ~ - -
S&r T i, ke

(A - K H)(x,+Xb) +K [ y(t| ) +HAb +Ch] (a-2)
Additionaily, from Eqs. (3), (12), and (18), we see that

z(tl./o) - x(tl/z) +t+HAb + Cb ' (A-3)

so that Eq. (A-2) can also be written, in terms of z(tl /0). as

-18-




d = —— - ~ - —— o 5
T ErTR) = A=K W) (5,4 K0+ K_y(el /) (A-4)

but, _:Ez(o) + IT(O)P_ = _JEZ(O) - E(O); hence, £Z+ ITB satisfies the same

d.e. as g By uniqueness, therefore, §Z+K3 = E, which is Eq. (20).

3. Proof of Theorem 3

To begin, observe from Theorems l and 2 that Vx(O) = A(0) - IT(O) = 0.
Then, using Eqs. (17) and (192), we see that

! Vx= A-A= (A-KxH)vx+(B-Kxc)' (A -5)

which is Eq. (21a).
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APPENDIX B. UNBIASEDNESS PROOFS

1. Proof of Theorem 4

From Eqs. (2a) and (23), we see that
(B-1)

2

I ®-b) = -GIE - Gzz_(t|./o)-G35

Substitute Eqs.A (3), (18) and (20) into Eq. (B-1),take the expected value of
is an unbiased estimator

=2

the resulting equation, and use the fact that x

of X, to show that

d - o - -
grElb-b} = -G E{b} - (G,HA+G,C + G, M)b
(B-2)

-(G,H +G,) E{ x,]

To prove sufficiency, assume E[é} = E{b}; then, from Eq. (B-2),

GI+G2HA+GZC +G3A =0 (B-3)
and
0 (B-4)

+ =
GZH G3

Solve Eq. (B-4) for G3 to obtain Eq. (26a); substitute that expression
into Eq. (B-3); and use the fact, from Theorem 3, that Vx =A-1R, to

show that
G1 - -Gz (HVx*’ c) , (B-5)

which is Eq. (25a).
To prove necessity, substitute Eqs. (25a) and (26a) into Eq. (B-2),

to see that
-20- |




o
e
—
o
1
o
T

d a b
T+ E(b-5) =G Elb-

Because of Eq. (24), the unique solution to this equation is E[

|O‘
IU)
s
n
12

~

hence, E is an unbiased estimate of R

2. Proof of Theorem 5

From Eqs. (18), (8), and (20), and Theorem 3, we see that

x-x = Ez‘éz) &S ®-5) (B-7)

Now, x :2 is the optimal (unbiased) estimate of X, 80 that E{x - x } = 0;

hence, E{ x - x} = 0, which proves that x is an unbiased esttmate of x.
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APPENDIX C. OPTIMIZATION PROOFS - i

1. Proof of Theorem & , ké

= o) = L]
(0) then Pbx 0 for all t. We

e 2 5

obtain a differential equation for Pbx by differentiating Eq. (16b),
2

To .begin, we show that if P

Pbxz g E[Bei'Ze} % E':Ee i."’.e} ki)

From well-known filter results (Ref. 20, for example), we know that . ;L&

Xpo - W-KH)x, +8-KT (C-2) ‘

X =

Additionally, from Eqs. (l4c), (2a), and (28a), we find that

b, = -G,L BV _+C)b_+ Hx, +1] (C-3)

It is then relatively straightforward to show that

. 1 > ~
! = o - - ! -
E[ Ee fZe} GZ(Hvx+ C) P] X GZH Px2+ 3 GZR Kx (C-4)
and
& ~ 1 ~
|} = - ! - ' -
E{(b x,, P A-KH'+ =G RK' (C-5)

Substituting Eqs. (C-4) and (C-5) into Eq. (C-1), making use of the fact

that HP
x

= RK', we see that P satisfies the following linear homo-

geneous d. e, :

-22 -




pbx;2 = -G,HV_+C) Phxz + Pbe(A - K H) (C-6)

Since Pbxz(o) = 0, it follows that Phxz

=0, all ¢t.

Next, we develop the expression for Px in Eq. (30). From Eq.

(B-7), we see that

= ! !
Px Px + V‘x Pbx + Px b Vx * Vbe Vx . - (C=T)
2 2 2
and this expression reduces to Ecj. (30), since Pbx = 0.
2

.In a similar manner, it follows from Eqs. (B-7) and (29), that

Py =B ENUD e R (C-8)

which is Eq. (31).

Finally, to obtain Eq. (32) for P(t), substitute Eqs. (30) and (31)

into the right-hand side of Eq. (15) and collect the terms as shown.

2. Proof of Theorem 7

We seek to minimize tr Pb with respect to GZ’ where

s 2 g ! 1 ' . -
_Pb GZ(HVx+ C) Pb Pb(HVx-l- C) G2 +G2R G2 (C-9)

Equation (C-9) follows, in the usual manner, from Egs. (C-3) and (29).
Our approach is the matrix minimum principle, in the manner of Ref. 12,

applied to the following Hamiltonian, H:

-23-




H = tr[ f’b(t)'r(t)] (C-10)

From the condition that BH/BGZ= 0, and gradient matrix operations, we see

that tr P, is minimum with respect to G, if

b 2

-1
-G, = Py HV +C)'R (C-11)

which is Eq. (3’3a).

Equation (35a) follows upon substitution of Eq. (C-11) into Eq. (C-9).

o2de




g s - gl s i

APPENDIX D. OPTIMALITY PROOF

|
| _
’ To prove Theorem 8, we use the orthogonality principle (Refs. 10
‘ and 11) stated in Eq. (44a). Because the details of the proof are sornéwhat
intricate, and do not contribute to further understanding of this paper's
; problems, we give a brief sketch of the proof. Details can be found in

the second author’s Ph.D. dissertation (Ref. 18).

From Eq. (B-7), we see that

X E{x, y(ld)] .
N\ s, Yl p = 3 £l o JEib_yir|L)]

(D-1)

Using Eq. (A-3) and the fact that g is the optimal estimate for l(tljz)'

it follows that E{ LT 't 6{0)} =20, all0<Tt<t. To show that

E{ b, y'(r |jo)} =0, all 0 <t <t, consider that expectation first for

0 <T<t and then for r = t. In the former situation, show from Eq.
(C-3) that E[ée X'(TI _.;/o)] satisfies a linear homogeneous d.e. with zero
p initial conditions; hence, E{Ee y'(r] jo)} =0, for0< 7 <t For the

L latter situation, use the fact that b is the optimal estimate for observation

equation (37); hence, E{Be(t) Z’(tl ./o)} =0, so that

E{b (Y 'tl4)} = E[b X'®OIH'®) (D-2)

b i

Finally, express ;(t) as a linear transformation of the measurements

over the interval [ 0,t] and show that the right-hand side of Eq. (D-2) is

zero. By these arguments, we have shown that our results give the
optimal linear estimators of x and b. Because all noise processes are
gaussian, it then follows that our results give the optimal estimators of
x and b (Ref. 20).
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APPENDIX E. PROOF OF MULTISTAGE RESULTS

It is straightforward to show, from Eq. (54), that

o (vxli sz>' e

where Vx is defined in Eq. (21b). From Egs. (8) and (E-1), it follows that

u=~ ~ + -~ .
x §+vx131 vngz, (E-2)

and, substituting Eq. (52a) into Eq. (E-2), we obtain Eq. (55).
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